editing disabled

The temperaments listed are 58edo-distinct, meaning that they are all different even if tuned in 58edo. The ordering is by increasing complexity of 5. The temperament of lowest TE complexity supported by the patent val was chosen as the representative for each class of edo-distinctness.

5-limit temperaments

Period generator
Wedgie
Name
Complexity
Commas
58 19
<<14 1 -31]]

7.0510
6442450944/6103515625
29 10
<<30 -2 -73]]

15.837
9444732965739290427392/8381903171539306640625
58 1
<<16 -3 -42]]

8.828
4398046511104/4119873046875
29 9
<<2 -4 -11]]
Srutal
2.121
2048/2025
58 21
<<12 5 -20]]

5.522
254803968/244140625
29 1
<<26 6 -51]]

12.488
1641562064176545792/1490116119384765625
58 17
<<18 -7 -53]]

10.731
9007199254740992/8342742919921875
29 11
<<54 8 -113]]

26.555
[113 8 -54>
58 3
<<10 9 -9]]

4.502
10077696/9765625
29 8
<<34 48 -3]]

17.206
638131544614980078906888/582076609134674072265625
58 23
<<20 -11 -64]]

12.703
18446744073709551616/16894054412841796875
29 2
<<6 46 59]]

14.875
9007199254740992000000/8862938119652501095929
58 15
<<8 13 2]]
Unicorn
4.363
1594323/1562500
29 12
<<22 14 -29]]

9.851
2567836929097728/2384185791015625
58 5
<<22 43 17]]

13.625
328256967394537077627/312500
29 7
<<50 16 -91]]

23.481
[91 16 -50>
58 25
<<6 17 13]]
Gravity
5.177
129140163/128000000
29 3
<<38 40 -25]]

17.490
407943558924674501581996032/363797880709171295166015625
58 13
<<34 19 -49]]

15.323
654295038711035754184704/582076609134674072265625
29 13
<<10 38 37]]

11.672
1350851717672992089/1342177280000000000
58 7
<<4 21 24]]

6.600
10485760000/10460353203
29 6
<<18 22 -7]]

8.609
4016775629952/3814697265625
58 27
<<26 35 -5]]

12.886
1601009443167990624/1490116119384765625
29 4
<<46 24 -69]]

20.822
[69 24 -46>
58 11
<<2 25 35]]

8.326
858993459200/847288609443
29 14
<<42 32 -47]]

18.755
260789407250723664179754958848/227373675443232059478759765625
58 9
<<28 31 -16]]

13.029
40479843698864750592/37252902984619140625
29 5
<<14 30 15]]

9.338
205891132094649/200000000000000
2 1
<<0 29 46]]

10.202
70368744177664/68630377364883

7-limit temperaments

Period generator
Wedgie
Name
Complexity
Commas
58 19
<<14 1 33 -31 13 74]]

8.414
10976/10935 28672/28125
29 10
<<28 2 8 -62 -66 13]]

11.753
2401/2400 401408/390625
58 1
<<16 -3 17 -42 -18 48]]

7.540
1728/1715 28672/28125
29 9
<<2 -4 -16 -11 -31 -26]]

4.290
126/125 2048/2025
58 21
<<12 5 -9 -20 -48 -35]]

6.416
126/125 65536/64827
29 1
<<26 6 24 -51 -35 39]]

10.316
1728/1715 401408/390625
58 17
<<18 -7 1 -53 -49 22]]

8.928
2401/2400 28672/28125
29 11
<<4 -8 26 -22 30 83]]

7.609
2048/2025 19683/19600
58 3
<<10 9 7 -9 -17 -9]]

3.731
126/125 1728/1715
29 8
<<24 10 40 -40 -4 65]]

10.561
31104/30625 118098/117649
58 23
<<20 -11 -15 -64 -80 -4]]

11.806
28672/28125 50421/50000
29 2
<<6 -12 10 -33 -1 57]]

5.925
1728/1715 2048/2025
58 15
<<8 13 23 2 14 17]]

4.847
126/125 10976/10935
29 12
<<22 14 -2 -29 -65 -44]]

9.579
126/125 4194304/4117715
58 5
<<22 43 27 17 -19 -58]]

11.157
2401/2400 177147/175000
29 7
<<8 -16 -6 -44 -32 31]]

7.010
2048/2025 2401/2400
58 25
<<6 17 39 13 45 43]]

8.359
126/125 1605632/1594323
29 3
<<38 40 44 -25 -37 -10]]

14.346
126/125 97955205120/96889010407
58 13
<<24 39 11 6 -50 -84]]

11.703
1728/1715 1594323/1562500
29 13
<<10 -20 -22 -55 -63 5]]

9.999
2048/2025 50421/50000
58 7
<<4 21 -3 24 -16 -66]]

6.420
1728/1715 5120/5103
29 6
<<18 22 30 -7 -3 8]]

7.511
126/125 118098/117649
58 27
<<26 35 53 -5 11 25]]

12.079
126/125 645700815/645657712
29 4
<<12 34 20 26 -2 -49]]

8.457
2401/2400 19683/19600
58 11
<<2 25 13 35 15 -40]]

6.812
2401/2400 5120/5103
29 14
<<16 26 -12 4 -64 -101]]

10.753
31104/30625 65536/64827
58 9
<<28 31 37 -16 -20 -1]]

10.826
126/125 204073344/201768035
29 5
<<14 30 4 15 -33 -75]]

8.670
1728/1715 177147/175000
2 1
<<0 29 29 46 46 -14]]

9.402
5120/5103 50421/50000

11-limit temperaments

Period generator
Wedgie
Name
Complexity
Commas
58 19
<<14 1 33 35 -31 13 7 74 78 -16]]

7.910
176/175 243/242 5488/5445
29 10
<<28 2 8 12 -62 -66 -78 13 21 6]]

10.249
176/175 1344/1331 2401/2400
58 1
<<16 -3 17 11 -42 -18 -38 48 36 -28]]

6.539
176/175 540/539 1344/1331
29 9
<<2 -4 -16 -24 -11 -31 -45 -26 -42 -12]]

5.048
126/125 176/175 5488/5445
58 21
<<12 5 -9 1 -20 -48 -40 -35 -15 34]]

5.622
126/125 176/175 1344/1331
29 1
<<26 6 24 36 -51 -35 -33 39 63 18]]

9.209
176/175 540/539 33614/33275
58 17
<<18 -7 1 -13 -53 -49 -83 22 -6 -40]]

8.597
176/175 2401/2400 2560/2541
29 11
<<4 -8 26 10 -22 30 2 83 51 -62]]

6.610
176/175 243/242 896/891
58 3
<<10 9 7 25 -9 -17 5 -9 27 46]]

4.127
126/125 176/175 243/242
29 8
<<24 10 40 2 -40 -4 -80 65 -30 -133]]

10.411
540/539 3072/3025 3168/3125
58 23
<<20 -11 -15 21 -64 -80 -36 -4 87 111]]

10.79
441/440 3072/3025 3388/3375
29 2
<<6 -12 10 -14 -33 -1 -43 57 9 -74]]

5.898
176/175 540/539 896/891
58 15
<<8 13 23 -9 2 14 -42 17 -66 -105]]

6.251
126/125 540/539 896/891
29 12
<<22 14 -2 26 -29 -65 -35 -44 12 80]]

8.473
126/125 176/175 103680/102487
58 5
<<22 43 27 55 17 -19 11 -58 -21 61]]

10.247
243/242 441/440 43923/43750
29 7
<<8 -16 -6 20 -44 -32 4 31 102 77]]

7.436
243/242 441/440 2048/2025
58 25
<<6 17 39 15 13 45 3 43 -24 -93]]

7.341
126/125 243/242 896/891
29 3
<<20 18 14 -8 -18 -34 -82 -18 -81 -71]]

8.475
126/125 1728/1715 2560/2541
58 13
<<24 39 11 31 6 -50 -34 -84 -63 49]]

10.136
441/440 1728/1715 4000/3993
29 13
<<10 -20 -22 -4 -55 -63 -41 5 60 65]]

8.704
441/440 1344/1331 3388/3375
58 7
<<4 21 -3 -19 24 -16 -44 -66 -117 -43]]

7.574
441/440 896/891 1728/1715
29 6
<<18 22 30 16 -7 -3 -37 8 -39 -59]]

6.826
126/125 540/539 1344/1331
58 27
<<32 23 5 51 -38 -82 -30 -53 39 126]]

12.085
126/125 176/175 35831808/35153041
29 4
<<12 34 20 30 26 -2 6 -49 -48 15]]

7.373
243/242 441/440 4000/3993
58 11
<<2 25 13 5 35 15 1 -40 -75 -31]]

6.148
243/242 441/440 896/891
29 14
<<16 26 46 40 4 28 8 34 3 -47]]

8.504
126/125 243/242 5488/5445
58 9
<<28 31 37 41 -16 -20 -32 -1 -12 -13]]

9.390
126/125 540/539 12005/11979
29 5
<<14 30 4 6 15 -33 -39 -75 -90 3]]

7.939
441/440 1344/1331 1728/1715
2 1
<<0 29 29 29 46 46 46 -14 -33 -19]]

8.317
441/440 896/891 3388/3375

13-limit temperaments

Period generator
Wedgie
Name
Complexity
Commas
58 19
<<14 1 33 35 51 -31 13 7 29 74 78 115 -16 21 47]]

8.314
176/175 196/195 243/242 364/363
29 10
<<28 2 8 12 44 -62 -66 -78 -34 13 21 95 6 94 108]]

10.002
144/143 176/175 676/675 2401/2400
58 1
<<16 -3 17 11 21 -42 -18 -38 -26 48 36 60 -28 -4 32]]

5.970
144/143 176/175 196/195 364/363
29 9
<<2 -4 -16 -24 -30 -11 -31 -45 -55 -26 -42 -55 -12 -25 -15]]

5.517
126/125 176/175 196/195 364/363
58 21
<<12 5 -9 1 23 -20 -48 -40 -8 -35 -15 35 34 98 76]]

5.758
126/125 144/143 176/175 364/363
29 1
<<26 6 24 36 16 -51 -35 -33 -71 39 63 15 18 -44 -78]]

8.451
144/143 176/175 196/195 2200/2197
58 17
<<18 -7 1 -13 -9 -53 -49 -83 -81 22 -6 5 -40 -29 17]]

7.940
176/175 196/195 364/363 512/507
29 11
<<4 -8 26 10 -2 -22 30 2 -18 83 51 25 -62 -102 -44]]

6.128
144/143 176/175 351/350 676/675
58 3
<<10 9 7 25 -5 -9 -17 5 -45 -9 27 -45 46 -40 -110]]

4.810
126/125 144/143 176/175 196/195
29 8
<<24 10 40 2 46 -40 -4 -80 -16 65 -30 70 -133 -19 152]]

9.854
144/143 196/195 2205/2197 3267/3250
58 23
<<20 -11 -15 21 19 -64 -80 -36 -44 -4 87 85 111 109 -12]]

9.851
144/143 441/440 676/675 847/845
29 2
<<6 -12 10 -14 26 -33 -1 -43 19 57 9 105 -74 36 142]]

6.793
144/143 176/175 196/195 729/728
58 15
<<8 13 23 -9 25 2 14 -42 10 17 -66 10 -105 -15 120]]

5.948
126/125 144/143 196/195 676/675
29 12
<<22 14 -2 26 18 -29 -65 -35 -53 -44 12 -10 80 58 -34]]

7.584
126/125 144/143 176/175 847/845
58 5
<<22 43 27 55 47 17 -19 11 -7 -58 -21 -50 61 32 -41]]

9.188
243/242 351/350 441/440 1188/1183
29 7
<<8 -16 -6 20 -4 -44 -32 4 -36 31 102 50 77 11 -88]]

6.703
144/143 196/195 243/242 2200/2197
58 25
<<6 17 -19 15 -3 13 -47 3 -27 -92 -24 -70 108 62 -66]]

7.020
176/175 243/242 351/350 847/845
29 3
<<20 18 14 50 48 -18 -34 10 2 -18 54 45 92 83 -19]]

7.929
126/125 176/175 243/242 1188/1183
58 13
<<24 39 11 31 17 6 -50 -34 -62 -84 -63 -105 49 7 -56]]

9.414
144/143 351/350 441/440 847/845
29 13
<<10 -20 -22 -4 -34 -55 -63 -41 -91 5 60 -5 65 -14 -103]]

8.755
196/195 352/351 832/825 1001/1000
58 7
<<4 21 -3 39 27 24 -16 48 28 -66 18 -15 120 87 -51]]

7.182
176/175 351/350 676/675 847/845
29 6
<<18 22 30 16 20 -7 -3 -37 -35 8 -39 -35 -59 -55 10]]

6.197
126/125 144/143 196/195 364/363
58 27
<<26 35 53 7 45 -5 11 -79 -25 25 -105 -25 -164 -70 130]]

11.154
126/125 144/143 196/195 114345/114244
29 4
<<12 34 20 30 52 26 -2 6 38 -49 -48 -5 15 72 69]]

7.574
243/242 351/350 441/440 676/675
58 11
<<2 25 13 5 -1 35 15 1 -9 -40 -75 -95 -31 -51 -22]]

5.942
144/143 196/195 243/242 364/363
29 14
<<16 26 46 40 50 4 28 8 20 34 3 20 -47 -30 25]]

7.895
126/125 196/195 364/363 676/675
58 9
<<30 27 21 17 43 -27 -51 -77 -43 -27 -54 0 -25 43 86]]

9.223
126/125 144/143 364/363 1716/1715
29 5
<<14 30 4 6 22 15 -33 -39 -17 -75 -90 -60 3 47 54]]

7.123
144/143 351/350 364/363 441/440
2 1
<<0 29 29 29 29 46 46 46 46 -14 -33 -40 -19 -26 -7]]

7.496
196/195 352/351 364/363 676/675